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Asymptotic expansions are used to study the late-time behavior of the Riemann 
tensor for a large class of inhomogeneous cosmological models. These models 
include the unidirectional inhomogeneous generalizations of Bianchi type I-VII 
universes. The cosmic analog of the peeling-off theorem, familiar from general 
relativity, is formulated. It is also shown that chaotic behavior near the initial 
singularity transforms itself into pure gravitational radiation at late times. 

1. I N T R O D U C T I O N  

In the last few years, the possibility of  the existence of gravitational- 
radiation background in the Universe has been extensively discussed by 
many authors (Rossi and Zimmerman,  1976; Carr, 1980; Zimmerman and 
Hellings, 1980; Zeldovich and Novikov, 1983; Adams et al., 1982; Car t  and 
Verdaguer, 1983). From the theoretical point of  view such discussions 
became possible owing to the considerable progress in the study of 
inhomogeneous and anisotropic cosmologies. There is no evidence that our 
Universe, which is reasonably described at this stage of evolution by one 
of the Fr iedmann homogeneous and isotropic models, has passed a regular 
expansion during its early ages. On the contrary, it looks aesthetically more 
appealing to consider initially irregular expansion, which during the process 
of evolution has been smoothed by various damping processes. 

One of the theoretically predicted consequences of primordial 
irregularities is the emergence of a cosmological gravitational radiation 
background. Such a behavior has been studied by Adams et al. (1982) and 
by Carr and Verdaguer (1983) using two different techniques. Adams et al. 
studied solutions describing gravitational waves on homogeneous Bianchi 
backgrounds, whereas Car t  and Verdaguer used the so-called "soli ton" 

~Center for Theoretical Physics, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel. 
1009 

0020-7748/85/1000-1009504.50/0 • 1985 Plenum Publishing Corporation 



1010 Carmeli and Feinstein 

technique, developed by Belinskii and Zakharov (1979), to study the 
behavior of inhomogeneous cosmological models. In both approaches it 
was possible to find exact solutions with initial chaotic behavior near the 
singularity which transforms into gravitational radiation at late times. 

In this paper we present the cosmic analog (Carmeli and Feinstein, 
1984; Carmeli and Charach, 1980) of the familiar peeling-off property of 
the classical gravitational field (Sachs, 1962). This will enable us to find the 
late-time behavior of a large class of inhomogeneous cosmological universes. 
One of our results will be the" confirmation of the prediction mentioned 
above, namely,.the late-time emergence of cosmological gravitational radi- 
ation background. The cosmological classification of gravitational fields 
will be given in terms of time rather than in terms of the radial distance as 
one usually has in general relativity (Petrov, 1969). This is done for the 
inhomogeneous generalizations of Bianchi types I-VII. An immediate con- 
clusion of our analysis is that the dominant type of gravitational field, which 
survives as time goes to infinity, is the radiative field. 

In Section 2 we discuss the so-called generalized Einstein-Rosen 
metrics. In Section 3 we review the asymptotic properties o f  gravitational 
fields in classical general relativity theory. In Section 4 the cosmological 
peeling-off behavior is formulated, whereas Section 5 is devoted to the 
concluding remarks. 

2. GENERALIZED EINSTEIN-ROSEN METRICS 

In this section a brief outline of the so-called generalized Einstein- 
Rosen metrics is given. For more details on the subject the reader is referred 
to the review article by Carmeli and Charach (1984). 

Owing to the mathematical complexity of the inhomogeneous cosmo- 
logical models, one usually confines oneself to space-timeswhich are non- 
uniform in one spatial direction and uniform in the other two directions. 
Such space-times are described by the generalized Einstein-Rosen metrics, 
given by the line element, 

ds 2 
L 2 - e2 f (dz2-d t2)  + Tab dxa dxb (1) 

Here L is a unit length, t = x ~ is a timelike coordinate, a, b = 2, 3, the 
signature is +2, and f and Yab are functions of the coordinates z and t only. 

The metric (1) admits two commuting Killing vectors, Y~)= 85 and 
Y~) = 6~. The element of the transitivity surface G is given by 

V ~ V P "  V u "11/2 - -  ,}/1/2 (2) 

where 
y = det Y.b (3) 
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The local behavior of the models described by the line element (1) is 
determined by the four-vector G~, = G~ which can be timelike, spacelike, 
or null. Globally spacelike and null G~ correspond to solutions describing 
cylindrical and plane gravitational waves. In cosmology, however, one is 
interested in a globally timelike vector G~, or in the more general case for 
which G~ may vary from point to point. 

Owing to the presence of the Abelian subgroup G2 in the Bianchi 
models of types I-VII and in the axially symmetric Bianchi types VIII and 
IX, the Einstein-Rosen metrics include these models and some of their 
inhomogeneous generalizations as particular cases. This fact, which was 
first pointed out by Tomita (1978), makes them very relevant to the study 
of the inhomogeneous cosmologies. 

The Einstein field equations in vacuum have the form (Carmeli et al., 
1981) 

= 0 (4) 

K t A �9 K ; - - 1  a ~ b  
- -~  f - -~  f + - r ~Kb ^a=O (5) 

where 

~ K �9 

�9 A - i - ~ K b K a " r ~ A a A b ~ - O  _ ~ f _ .~ f + ~: ..l_ . , --1 a b -- , .  b-- a 

""  n �9 1 a b 1 b a 
( f  - - f  ) + K + ~ K b K ~ - - ~ A a A b = O  

(6) 

(7) 

t(ab = ~/ab, l~ab ~ ")lab! 
(8) 

K = "~abKab , 1~ = ~/ab~ab 

Here dots and primes denote derivatives with respect to t and z. 
It can be shown, without lost of generality (Carr and Verdaguer, 1983), 

that Bianchi cosmological models of types I-VII, as well as their unidirec- 
tional inhomogeneous generalizations, correspond to a special choice of 
Tab satisfying 

det Tab = t2 (9) 

Likewise, choosing detT~b to be proportional to sin2t and sinh2t correspond, 
respectively, to axially symmetric Bianchi type IX and VIII cosmological 
models and their generalizations (Carmeli and Charach, 1984; Carmeli et 
al., 1983a, b). 

Of particular interest is the metric 

d s 2 = e E f ( d z 2 - d t 2 ) + e E * d x 2 + 4 t x d x d y + t 2 e - E ~ ' ( l + 4 x  2) dy E (10) 

Here, f, ~b, and X are functions of z and t only. The line element (10) is 
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easily recognized as one of the forms of the generalized Einstein-Rosen 
metric with detT~b = t 2, thus including Bianchi models of types I-VII along 
with their generalizations. Both of  the gravitational degrees o f  freedom X 
and ~ are chosen in such a way that they have the same asymptotic form 
when t-> oo. The choice of  detT~b-----sin2t (which corresponds to close 
universes) is unsuitable for discussing gravitational radiation using 
asymptotic expansions in terms of time, since in this case the Universe does 
not expand to infinity. Neither will be considered the case for which detTab 
corresponds to generalized Bianchi type-VIII models, because of extreme 
mathematical difficulties. 

3. THE ASYMPTOTIC PROPERTIES OF GRAVITATIONAL 
FIELDS 

The peeling-off behavior of  the Riemann tensor in general relativity 
theory was first pointed out by Sachs (1962) in connection with the study 
of  the asymptotic properties of gravitational radiation fields. It is convenient 
to expand the physical quantities, associated with the field, in powers of  
l / r ,  where r is the affine distance from an isolated system of sources. The 
calculations are conveniently performed in the framework of  the so-called 
Newman-Penrose formalism (Newman and Penrose, 1962), where one 
studies the tetrad components of  the Riemann tensor instead of its coordin- 
ate components thus avoiding the choice of  a "preferable" coordinate 
system. In this method a tetrad (P', n ~, m, rh ~) of  null vectors is introduced, 
satisfying 

l~m~, = n ~ m ~  = 0 
(11) 

P 'n~  = 1, m ~ r ~  = - 1  

where r~ ~ is the complex conjugate of m ~, and 1 ~ and n ~ are real. Then 
the metric g,,V can be expressed as 

g ~  = l ~ n  ~ + n ~ F  - m ~ r ~  ~ - r ~ m  ~ (12) 

The ten real components of the Riemann tensor in vacuum are now 
specified uniquely by five complex scalars: 

~ 1  = - R ~ p , ~  l ~ n  ~IPm~ 

~ 2  = - l  R ~ p ~  l ~ n  ~ ( Ipn~  - m P r n ~ )  (13) 

%~'r : -ggvpo "fflgn ~'IVn~ 

xI~ 4 = - R ~ , p , ~ n  ~" fflPn ~ 
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It can be shown (Sachs, 1962; Newman and Penrose, 1962) that under 
certain general assumptions of approach to flatness at infinity, which is 
natural for radiative empty spaces, the Riemann tensor exhibits a charac- 
teristic asymptotic behavior of the form 

�9 ~ = O(rn-5), n =0, 1 , . . . , 4  (14) 

Combining the latter result with the Petrov algebraic classification of the 
gravitational fields (Petrov, 1969) then allows one to derive the following 
general decomposition of the Riemann tensor (Sachs, 1962): 

R ~ v v o .  = - 1  --2 --3 N ~ , ~ r  +III~p~r +I I~ ,~r  + -4 ~. -5 I~p~r + I,~p~r (15) 

Here the coefficients N.~p~,...,  I,~p~ denote fields of types N , . . . ,  I accord- 
ing to the Petrov classification. 

The physical significance of the decomposition (15) is clarified when 
one compares it to the analogous behavior of the Maxwell electromagnetic 
tensor F ~  of the fields of an isolated charge-current distribution. One then 
obtains (Goldberg and Kerr, 1964) 

F ~  = N ~ r  -1 + III~r-2 + O( r -3) (16) 

where the coefficients satisfy the conditions along the null rays k ", 

N ~ k  ~ = 0, I I I~k  ~ = Ak~, k~k ~ = 0 (17) 

It is well known from classical electrodynamics that one interprets the 
Maxwell tensor in equation (16) in terms of the near zone (induction zone), 
and the far zone (wave zone) dominated by the radiative N-type electromag- 
netic field. This allows one to interpret the results of the decomposition 
(15) for the gravitational field in the same way. Very far from the gravita- 
tionally emitting system at distances much greater than the dimensions of 
the system itself and the emitted wavelength, the local stationary observer 
will "experience" approximately the N radiative type field. Near the emit- 
ting system at distances smaller than the system dimensions and the emitted 
wavelength, the terms of the type-I (algebraically general) field will domi- 
nate. At distances smaller than the wavelength of emission but greater than 
the dimensions of the system, the terms of types II and II! will be most 
important. 

One may extend these results to the nonempty spaces by including 
matter. The behavior of gravitational fields of electrically charged bodies 
is also determined by the Sachs peeling-off theorem (Kozarzewski, 1965), 
since trajectories of propagation of gravitational and electromagnetic radi- 
ation are the same. Hawking (i968) has investigated the peeling-off behavior 
of outgoing gravitational radiation from bounded sources in a dust-filled 
open Friedmann universe. He showed that the peeling-off behavior still 
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holds in an expanding universe, although the decomposition in the powers 
of  1/r is changed by the presence of matter. 

The asymptotic behavior of the Riemann tensor in the cylindrical 
case was analyzed in detail by Stachel (1966), and the Riemann tensor 
was found to obey the decomposition in powers of 1/r  1/2 rather than in 
powers of  1/r. 

As was pointed out in Section 2, the generalized Einstein-Rosen metrics 
describe equally well the cylindrical space-times and the cosmological 
models based on all Bianchi types. Consequently, the results obtained by 
us (Carmeli and Feinstein, 1984) are bound to be similar to those obtained 
by Stachel (1966), though in a very different physical context. 

4. THE C O S M O L O G I C A L  PEELING-OFF T H E O R E M  

The physical behavior of the cosmological models described by the 
metric (10) may best be understood by examining the components of the 
Riemann tensor, taken with respect to the null tetrad l ~', n ~', rn ~', and r~ ~" 
given by 

l ~* = e - Y ( a f +  8,~), n*" - -*~-Yr*'*-  a,  ~ ) 2 ~  ~,-~ 

m*' = 2-1/2[ e-*8~ + i(a~ + 2te-2*XS~)e*/  t] 
(18) 

with x ~ = (t, z, x, y). Analytic expressions for the complex components of 
the Riemann tensor W,, n = 0 . . . .  ,4, were given by Stachel (1966), and they 
are rather lengthy. 

It follows that for the entire class of metrics (10) the only nonzero 
components of  the Riemann tensor are Wo, W2, and W4. This easily enables 
one to find the Petrov type from the W's. Since W1 = W3 = 0, one can have 
only four distinct, or two double, roots to the quartic algebraic equation 
(Kramer et al., 1980) 

XI~0 + 6xIY2E2 + xI)'4 E4 = 0 (19) 

Thus the metric should be of  type I or D. For the homogeneous axisymmetric 
Kasner solution ($ =�89 In t, X = 0) and for the flat space-time (tp = 0, X = 0 
or $ = In t, X = 0) the metric is algebraically special. All other solutions 
examined have proved to be of  general Petrov type I. 

As was pointed out in Section 3, the essential of  the peeling-off behavior 
is that various different components of the Riemann tensor behave in 
different powers of the affine distance. In cosmology, however, one is 
interested in the development of the model with time rather than with the 
spatial distance. 
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To study such a behavior of the Riemann tensor we therefore expand 
the ~ ' s  in a power series in t -1/2 rather than in p-l/2 for Stachel's cylindrical 
case (1966). We also notice that both gravitational degrees of  freedom ~brad 
and Xrao describing radiation behave like O(t  -~/2) as time goes to infinity. 
For the nonvanishing components of the Riemann tensor ~o, ~2, and ~4 
we find, as t -> oo, 

~0 = e2Y[ O(1/ t  5/2) + a( a - 1)(2a - 1) / t  2] 
(20) 

aY~r2: e2fO(1/t3/2), ~t~t4..~- e2fO(1/t  U2) 

where a is related to the homogeneous mode of the gravitational field, 
~b = a In t, similarly to Stachel's cylindrical case but with the time coordinate 
t replacing the spatial coordinate p. 

Equations (20) show that the properties of the radiation field are 
strongly influenced by the presence of the homogeneous mode which gives 
rise to the term a ( a - 1 ) ( 2 a - 1 ) / t  2 and slows down the fall-off of  many 
physical quantities as t-> ~ .  There are, however, some exceptions when 
a = 0, 1, �89 which correspond to the flat (a = 0, 1) and axisymmetric Kasner 
(a =�89 spacetimes. For the homogeneous solutions, the f~lctor e 2f attends 
its maximum value t ~/2 in the axisymmetric Kasner case (a =�89 which 
means that the Riemann tensor at t -> oo always vanishes except in this case. 
At any rate, to the orders e2f/t  1/2 and e2f/t, the only nonvanishing com- 
ponent of  ~ ,  is ~4 and therefore the metric is of Petrov type N. To order 
e2f/t3/2, ~2 and ~4 do not vanish and the metric is of type II. To order 
e2f/ t  2, the metric may still be of type II, depending on whether or not the 
coefficient a(a - 1)(2a - 1) in ~o vanishes. As has been previously pointed 
out, the vanishing of the coefficient corresponds either to the axisymmetric 
Kasner or flat space-times. In all the other cases the metric is of general 
Petrov type I. 

To summarize the above we can write, in complete analogy to Stachel's 
cylindrical case, 

e-Ef Ra~v~ = oN~v8 / t 1/2 Jr oN'~v~/ t + olI~v~/t  3/2 

+ 01(11, D ) ~ v ~ / t  2 + oI~v~/ t  5/2 (21) 

The space-time may thus be divided into three different zones as time 
approaches infinity, in the last one of which the field is pure radiative. 

5. CONCLUDING REMARKS 

We have shown explicitly that the Riemann tensor of a large class of 
inhomogeneous cosmologies has a peeling-off behavior in time. This was 
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proved for unidirectional generalizations of  Bianchi types I -VI I  cosmologi- 
cal models. Our results are bound to be mathemat ica l ly  similar to those 
obtained by Stachel (1966) for the standard Einstein-Rosen cylindrical case. 
This is so since the metric used here is effectively the same as Stachel's, 
with the two nonignorable coordinates being swapped around. The physical 
interpretation of  the Einstein-Rosen metric as a cosmological model 
developing in time, however, is preferable as compared to the standard 
cylindrical case which is physically unrealistic. 

Our results allow one to classify cosmological gravitational fields in 
time, and to establish, in some sense, the algebraic history for a quite general 
class of  inhomogeneous universes. Near  the Big Bang singularity, as t ~ 0, 
these universes behave chaotically, whereas in the late-time limit one finds 
pure gravitational radiation. 

Although the peeling-off behavior is proved for the vacuum universes, 
one may easily extend i t  to the case of  electromagnetic cosmologies [along 
the lines of  the work (Kozarzewski, 1965)], and also to the case of  universes 
filled with stiff fluid. In the latter case the presence of  the matter will only 
slightly change the scale factor e 2f (Carmeli et al., 1981, 1983a, b), thus 
producing no influence on the peeling-off behavior  of  the Riemann tensor. 
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